Monday, 21 September 2009

Multilayered slant-angle thin film energy detector

A detector of thermal energy is composed of an insulating substrate such as glass or sapphire coated with a thin film deposit of a slant-angle deposited metal preferably a transition element such as Ti, V, Cr, Co, Ni, Ta, W, U, Os, Ir, Pt and Mb exhibiting a transverse thermoelectric effect in response to a thermal energy gradient normal to the plane of the deposit. A layer of an electrical insulating material which is thermally conductive is deposited upon the thin film deposit, using materials such as SiO.sub.2, SiO, perylene, etc. Another thin film deposit of a slant-angle film is deposited on top of the insulating material. A stack of alternate slant-angle thermoelectric elements and electrical insulating layers is formed to a depth at which the thermal gradient in the lowest slant-angle deposit is marginally advantageous. An input light, laser or other heat producing beam is applied to the upper layer of the stack. Alternatively, heat can also be applied to the lower surface through a transparent substrate producing interfacial heating. Heat leaks into other film layers producing a substantial thermal gradient and hence, a thermoelectric transverse voltage in each of the metal films. The layers are interconnected electrically.




DETAILED DESCRIPTION In accordance with this invention a substrate of a thermally conductive dielectric material, is coated with a first thin film deposit of an electrically and thermally conductive material having an induced anisotropy.
A second thin film deposit of electrically insulating, thermally conductive material is applied to the exposed surface of the first deposit.
A third thin film deposit of electrically and thermally conductive material having an induced anisotropy overlies the second deposit.
The first and third thin film deposits are connected electrically to at least a pair of contacts for developing a transverse electrical signal (voltage) between the contacts.
There are means applied to the structure for establishing a temperature gradient in the layers of deposits normal to the planes of the surfaces of the deposits.
Preferably, the electrically conductive material is a metal.
Such a metal should be high in melting point and be included in the transition metal group.
Appropriate metals include titanium, vanadium, chromium, cobalt, nickel, iron, tantalum, tungsten, uranium, osmium, indium, platinum, and molybdenum.
Further in accordance with this invention, the temperature gradient is supplied by means for locally directly heating a surface, which means for heating can be a laser, an electron beam or any other source of radiation producing phonons.
Further in accordance with this invention, the electrically conductive thin film deposits are composed of slant-angle deposited metallic films providing a transverse thermoelectric voltage when a thermal gradient is applied preferably at a normal angle to the plane of the films.
An object of this invention is to provide a highly efficient thermoelectric detector responsive to thermal energy gradients applied normal to the exposed surface of the detector.
Another object is to provide a more sensitive detector operable in high temperature environments and when exposed to high levels of energy.
Still another object is a more sensitive detector sensitive to electromagnetic energy from 0

Bipen Tours & Travel

Thank you for choosing Bipen Tours & Travel, offering the best in chartered bus services and luxury transportation. From airport town car shuttle service to collegiate and professional chartered transportation for athletic departments. Our drivers are skilled and experienced, efficient and are highly praised for our customer satisfaction.

Arranging travel through Bipen Tours & Travel only takes one phone call, and we guarantee a quality experience every time. Joy Tours & Travel’s services are non-traditional and our state-of-the-art vehicles will give you a luxurious ride at a fair price. We understand your need to maintain a professional image, timeliness, and cost efficient services so let us plan and execute your next trip.We have earned the reputation of being one of countries most respected transportation companies because over the past 25 years we have been there and done that! Which makes us confident we can meet your need.

Another area where Pfizer has made a “big impact,” Dunn said, is in the development and the manufacturing part of the organization. “You can see in our sildenafil program that in 2000, we were down to 6.3 liters per kilo, and you see a dramatic reductionin the amount of waste used in that process. It is not common for a new pharmaceutical product to produce such low levels of waste. We’ve been setting very aggressive targets.” 

At the end of the interview, Dunn reiterated, “I think [setting up a green initiative ] can be hard work in the initial stages, but the financial rewards are there and also the environmental rewards are there. It can be hard work in the initial stages—you need to win the hearts and minds of colleagues and especially scientific colleagues at the bench, they are often the people that make decisions as to what materials go into the process, but I think the rewards are there; both financial and social.” 

Thursday, 10 September 2009

Human Genome Project

Human Genome Project

DNA Replication image from the Human Genome Project (HGP)The Human Genome Project is an initiative of the U.S. Department of Energy (“DOE”) that aims to generate a high-quality reference sequence for the entire human genome and identify all the human genes.

The DOE and its predecessor agencies were assigned by the U.S. Congress to develop new energy resources and technologies and to pursue a deeper understanding of potential health and environmental risks posed by their production and use. In 1986, the DOE announced its Human Genome Initiative. Shortly thereafter, the DOE and National Institutes of Health developed a plan for a joint Human Genome Project (“HGP”), which officially began in 1990.

The HGP was originally planned to last 15 years. However, rapid technological advances and worldwide participation accelerated the completion date to 2003 (making it a 13 year project). Already it has enabled gene hunters to pinpoint genes associated with more than 30 disorders.

Cloning
Main article: Cloning
Cloning involves the removal of the nucleus from one cell and its placement in an unfertilized egg cell whose nucleus has either been deactivated or removed.

There are two types of cloning:

Reproductive cloning. After a few divisions, the egg cell is placed into a uterus where it is allowed to develop into a fetus that is genetically identical to the donor of the original nucleus.
Therapeutic cloning.[15] The egg is placed into a Petri dish where it develops into embryonic stem cells, which have shown potentials for treating several ailments.[16]
In February 1997, cloning became the focus of media attention when Ian Wilmut and his colleagues at the Roslin Institute announced the successful cloning of a sheep, named Dolly, from the mammary glands of an adult female. The cloning of Dolly made it apparent to many that the techniques used to produce her could someday be used to clone human beings.[17] This stirred a lot of controversy because of its ethical implications.


Agriculture
Responsible biotechnology is not the enemy; starvation is. Without adequate food supplies at affordable prices, we cannot expect world health or peace.

—Jimmy Carter, Former President of the United States, 11 Jul 1997,
However biotechnology has little to do with preventing starvation or malnutrition. The main purpose of biotechnology is to increase profits for a small group of companies by privatizing natural resources. Starvation is not caused by inadequate food supplies or crop varieties, but rather the economic and power inequalities which biotechnology reinforces.


Crop yield
Using the techniques of modern biotechnology, one or two genes(Smartstax from Monsanto will use 8, starting in 2010) may be transferred to a highly developed crop variety to impart a new character that would increase its yield.[19] However, while increases in crop yield are the most obvious applications of modern biotechnology in agriculture, it is also the most difficult one. Current genetic engineering techniques work best for effects that are controlled by a single gene. Many of the genetic characteristics associated with yield (e.g., enhanced growth) are controlled by a large number of genes, each of which has a minimal effect on the overall yield. There is, therefore, much scientific work to be done in this area.


Reduced vulnerability of crops to environmental stresses
Crops containing genes that will enable them to withstand biotic and abiotic stresses may be developed. For example, drought and excessively salty soil are two important limiting factors in crop productivity. Biotechnologists are studying plants that can cope with these extreme conditions in the hope of finding the genes that enable them to do so and eventually transferring these genes to the more desirable crops. One of the latest developments is the identification of a plant gene, At-DBF2, from thale cress, a tiny weed that is often used for plant research because it is very easy to grow and its genetic code is well mapped out. When this gene was inserted into tomato and tobacco cells (see RNA interference), the cells were able to withstand environmental stresses like salt, drought, cold and heat, far more than ordinary cells. If these preliminary results prove successful in larger trials, then At-DBF2 genes can help in engineering crops that can better withstand harsh environments.[21] Researchers have also created transgenic rice plants that are resistant to rice yellow mottle virus (RYMV). In Africa, this virus destroys majority of the rice crops and makes the surviving plants more susceptible to fungal infections.


Increased nutritional qualities &quantity of food crops
Proteins in foods may be modified to increase their nutritional qualities. Proteins in legumes and cereals may be transformed to provide the amino acids needed by human beings for a balanced diet.[20] A good example is the work of Professors Ingo Potrykus and Peter Beyer on the so-called Golden rice (discussed below).


Improved taste, texture or appearance of food
Modern biotechnology can be used to slow down the process of spoilage so that fruit can ripen longer on the plant and then be transported to the consumer with a still reasonable shelf life. This alters the taste, texture and appearance of the fruit. More importantly, it could expand the market for farmers in developing countries due to the reduction in spoilage. However, there is sometimes a lack of understanding by researchers in developed countries about the actual needs of prospective beneficiaries in developing countries. For example, engineering soybeans to resist spoilage makes them less suitable for producing tempe which is a significant source of protein that depends on fermentation. The use of modified soybeans results in a lumpy texture that is less palatable and less convenient when cooking.

The first genetically modified food product was a tomato which was transformed to delay its ripening. Researchers in Indonesia, Malaysia, Thailand, Philippines and Vietnam are currently working on delayed-ripening papaya in collaboration with the University of Nottingham and Zeneca.

Biotechnology in cheese production: enzymes produced by micro-organisms provide an alternative to animal rennet – a cheese coagulant – and an alternative supply for cheese makers. This also eliminates possible public concerns with animal-derived material, although there are currently no plans to develop synthetic milk, thus making this argument less compelling. Enzymes offer an animal-friendly alternative to animal rennet. While providing comparable quality, they are theoretically also less expensive.

About 85 million tons of wheat flour is used every year to bake bread.[26] By adding an enzyme called maltogenic amylase to the flour, bread stays fresher longer. Assuming that 10–15% of bread is thrown away as stale, if it could be made to stay fresh another 5–7 days then perhaps 2 million tons of flour per year would be saved. Other enzymes can cause bread to expand to make a lighter loaf, or alter the loaf in a range of ways.


Reduced dependence on fertilizers, pesticides and other agrochemicals
Most of the current commercial applications of modern biotechnology in agriculture are on reducing the dependence of farmers on agrochemicals. For example, Bacillus thuringiensis (Bt) is a soil bacterium that produces a protein with insecticidal qualities. Traditionally, a fermentation process has been used to produce an insecticidal spray from these bacteria. In this form, the Bt toxin occurs as an inactive protoxin, which requires digestion by an insect to be effective. There are several Bt toxins and each one is specific to certain target insects. Crop plants have now been engineered to contain and express the genes for Bt toxin, which they produce in its active form. When a susceptible insect ingests the transgenic crop cultivar expressing the Bt protein, it stops feeding and soon thereafter dies as a result of the Bt toxin binding to its gut wall. Bt corn is now commercially available in a number of countries to control corn borer (a lepidopteran insect), which is otherwise controlled by spraying (a more difficult process).

Crops have also been genetically engineered to acquire tolerance to broad-spectrum herbicide. The lack of cost-effective herbicides with broad-spectrum activity and no crop injury was a consistent limitation in crop weed management. Multiple applications of numerous herbicides were routinely used to control a wide range of weed species detrimental to agronomic crops. Weed management tended to rely on preemergence—that is, herbicide applications were sprayed in response to expected weed infestations rather than in response to actual weeds present. Mechanical cultivation and hand weeding were often necessary to control weeds not controlled by herbicide applications. The introduction of herbicide-tolerant crops has the potential of reducing the number of herbicide active ingredients used for weed management, reducing the number of herbicide applications made during a season, and increasing yield due to improved weed management and less crop injury. Transgenic crops that express tolerance to glyphosate, glufosinate and bromoxynil have been developed. These herbicides can now be sprayed on transgenic crops without inflicting damage on the crops while killing nearby weeds.

From 1996 to 2001, herbicide tolerance was the most dominant trait introduced to commercially available transgenic crops, followed by insect resistance. In 2001, herbicide tolerance deployed in soybean, corn and cotton accounted for 77% of the 626,000 square kilometres planted to transgenic crops; Bt crops accounted for 15%; and "stacked genes" for herbicide tolerance and insect resistance used in both cotton and corn accounted for 8%.


Production of novel substances in crop plants
Biotechnology is being applied for novel uses other than food. For example, oilseed can be modified to produce fatty acids for detergents, substitute fuels and petrochemicals. Potatoes, tomatoes, ricererere tobacco, lettuce, safflowers, and other plants have been genetically-engineered to produce insulin and certain vaccines. If future clinical trials prove successful, the advantages of edible vaccines would be enormous, especially for developing countries. The transgenic plants may be grown locally and cheaply. Homegrown vaccines would also avoid logistical and economic problems posed by having to transport traditional preparations over long distances and keeping them cold while in transit. And since they are edible, they will not need syringes, which are not only an additional expense in the traditional vaccine preparations but also a source of infections if contaminated.[29] In the case of insulin grown in transgenic plants, it is well-established that the gastrointestinal system breaks the protein down therefore this could not currently be administered as an edible protein. However, it might be produced at significantly lower cost than insulin produced in costly, bioreactors. For example, Calgary, Canada-based SemBioSys Genetics, Inc. reports that its safflower-produced insulin will reduce unit costs by over 25% or more and approximates a reduction in the capital costs associated with building a commercial-scale insulin manufacturing facility of over $100 million, compared to traditional biomanufacturing facilities


Criticism
There is another side to the agricultural biotechnology issue. It includes increased herbicide usage and resultant herbicide resistance, "super weeds," residues on and in food crops, genetic contamination of non-GM crops which hurt organic and conventional farmers, damage to wildlife from glyphosate, etc.[31][32]


Biological engineering

Biotechnological engineering or biological engineering is a branch of engineering that focuses on biotechnologies and biological science. It includes different disciplines such as biochemical engineering, biomedical engineering, bio-process engineering, biosystem engineering and so on. Because of the novelty of the field, the definition of a bioengineer is still undefined. However, in general it is an integrated approach of fundamental biological sciences and traditional engineering principles.

Bioengineers are often employed to scale up bio processes from the laboratory scale to the manufacturing scale. Moreover, as with most engineers, they often deal with management, economic and legal issues. Since patents and regulation (e.g., U.S. Food and Drug Administration regulation in the U.S.) are very important issues for biotech enterprises, bioengineers are often required to have knowledge related to these issues.

The increasing number of biotech enterprises is likely to create a need for bioengineers in the years to come. Many universities throughout the world are now providing programs in bioengineering and biotechnology (as independent programs or specialty programs within more established engineering fields).


Bioremediation and Biodegradation

Biotechnology is being used to engineer and adapt organisms especially microorganisms in an effort to find sustainable ways to clean up contaminated environments. The elimination of a wide range of pollutants and wastes from the environment is an absolute requirement to promote a sustainable development of our society with low environmental impact. Biological processes play a major role in the removal of contaminants and biotechnology is taking advantage of the astonishing catabolic versatility of microorganisms to degrade/convert such compounds. New methodological breakthroughs in sequencing, genomics, proteomics, bioinformatics and imaging are producing vast amounts of information. In the field of Environmental Microbiology, genome-based global studies open a new era providing unprecedented in silico views of metabolic and regulatory networks, as well as clues to the evolution of degradation pathways and to the molecular adaptation strategies to changing environmental conditions. Functional genomic and metagenomic approaches are increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds and they will certainly accelerate the development of bioremediation technologies and biotransformation processes.

Marine environments are especially vulnerable since oil spills of coastal regions and the open sea are poorly containable and mitigation is difficult. In addition to pollution through human activities, millions of tons of petroleum enter the marine environment every year from natural seepages. Despite its toxicity, a considerable fraction of petroleum oil entering marine systems is eliminated by the hydrocarbon-degrading activities of microbial communities, in particular by a remarkable recently discovered group of specialists, the so-called hydrocarbonoclastic bacteria (HCCB).


Education
In 1988, after prompting from the United States Congress, the National Institute of General Medical Sciences (National Institutes of Health) instituted a funding mechanism for biotechnology training. Universities nationwide compete for these funds to establish Biotechnology Training Programs (BTPs). Each successful application is generally funded for five years then must be competitively renewed. Graduate students in turn compete for acceptance into a BTP. If accepted, stipend, tuition and health insurance support is provided for two or three years during the course of their PhD thesis work. Nineteen institutions offer NIGMS supported BTP. Biotechnology training is also offered at the undergraduate level and in community colleges.

Monday, 7 September 2009

Bio-technology

Bio-technology

Biotechnology is technology based on biology, agriculture, food science, and medicine. Modern use of the term usually refers to genetic engineering as well as cell- and tissue culture technologies. However, the concept encompasses a wider range and history of procedures for modifying living things according to human purposes, going back to domestication of animals, cultivation of plants and "improvements" to these through breeding programs that employ artificial selection and hybridization. By comparison to biotechnology, bioengineering is generally thought of as a related field with its emphasis more on mechanical and higher systems approaches to interfacing with and exploiting living things. United Nations Convention on Biological Diversity defines biotechnology as:[1]

"Any technological application that uses biological systems, dead organisms, or derivatives thereof, to make or modify products or processes for specific use."

Biotechnology draws on the pure biological sciences (genetics, microbiology, animal cell culture, molecular biology, biochemistry, embryology, cell biology) and in many instances is also dependent on knowledge and methods from outside the sphere of biology (chemical engineering, bioprocess engineering, information technology, biorobotics). Conversely, modern biological sciences (including even concepts such as molecular ecology) are intimately entwined and dependent on the methods developed through biotechnology and what is commonly thought of as the life sciences industry.